
Published Encrypted Rosters:

Technical Summary

David Chaum, Jeremy Clark, Neal McBurnett, Nan Yang

Abstract

We propose a practical technique for effectively auditing lists of voters without the
authority in possession of the actual voter identities on the list releasing any indi-
vidually identifiable data. Such auditability is novel and important, since rosters of
registered voters are recognized as fundamental to election integrity but are sometimes
partially withheld or made difficult or expensive to obtain.

Our Goals

An authority in possession of a list of voter identities can keep them confidential, using the
techniques presented here, even while in some sense making them public in the form of a
“Published Encrypted Roster.” The authority can then demonstrate a number of useful
properties of the roster, while it remains public in encrypted form.

One such property, responsive to an inquiry by an individual in this case, is the presence
or absence of that individual voter on the published roster. The identity of the particular
individual making the request is authenticated, so as to inhibit the possibility of illicit
probing.

A second property that can be shown about a published encrypted roster is that no voter
appears in the roster more than once.

A third property the authority can prove about a published encrypted roster is how
many of the persons listed in a challenge, such as that supplied by a third-party auditor,
are in the roster.

A published encrypted roster can also be used to randomly but verifiably sample voters
for “Random-Sample Voting.” The techniques presented here can establish the maximum
percentage of disagreement between a published encrypted roster and one or more challenges.

We are concerned with efficiency. In principle, any question can be answered in zero-
knowledge. In practice, rosters can be millions of entries long, and the complexity of text-
book zero-knowledge proofs becomes impractical. Thus, we only study those questions
which we think or know have practical solutions.

Our Solutions

The election authority (EA) makes public an additively homomorphic public-key encryption
scheme E along with its public keys.

The plaintext of the roster consists of k 128-bit integers x1 < . . . < xk. This is known
only to the EA.

1



The main encrypted roster (call it L1) consists of a list of ciphertext triples. This is a
sorted “linked list” of encryptions of the form

L1 = 〈v1 = (E(x1), E(∆1), E(x2)), v2 = (E(x2), E(∆2), E(x3)), . . .〉

where ∆i = xi+1 − xi. That is, in the sense of

(a, b, c), (c, d, e), (e, f, g), . . .

Associated with the main roster is a “disposable” list L2. This second list is a permu-
tation of the the first list’s vi’s and re-randomizations of their ciphertexts. That is if π is
some permutation on k then

L2 =
〈
vπ(1), vπ(2), . . .

〉
along with a zero-knowledge proof that it was permuted and re-randomized correctly. This
is done by the EA and we will call this a “re-mixing” of the roster.

The second, permuted list may need to be discarded after each use. This is to ensure that
the auditor does not learn any additional information about the roster except for the answer
to his query. However, these permuted rosters can be pre-computed before any interactions
with auditors.

An auditor can verify the following offline, without interacting with the EA.

1. Is L2 a permutation of L1?

2. Is L1 sorted?

An auditor can interactively verify the following with the EA.

1. Is some 128-bit integer y on the roster? That is, is there an index j such that the first
element of vj decrypts to y?

2. I have a set Y = {y1 < . . . < yn}. Exactly which ones are on the roster, and which
are not?

3. Are there at least/at most/exactly m/n elements of Y on the roster (without learning
their identities)?

Open Problems

1. (Spelling/error detection) How to check whether encodings of names are spelled cor-
rectly, or check for alternate spellings?

2. (Disitributed roster/audit) Is it possible to have the roster split among different,
mutually-untrusting EAs; or have different auditors combine their lists without re-
vealing their content?

3. Defining the security of PERs in more rigorous terms. Having it UC-secure?

2


